20,245 research outputs found

    Bright-dark mixed NN-soliton solutions of the multi-component Mel'nikov system

    Get PDF
    By virtue of the KP hierarchy reduction technique, we construct the general bright-dark mixed NN-soliton solution to the multi-component Mel'nikov system comprised of multiple (say MM) short-wave components and one long-wave component with all possible combinations of nonlinearities including all-positive, all-negative and mixed types. Firstly, the two-bright-one-dark (2-b-1-d) and one-bright-two-dark (1-b-2-d) mixed NN-soliton solutions in short-wave components of the three-component Mel'nikov system are derived in detail. Then we extend our analysis to the MM-component Mel'nikov system to obtain its general mixed NN-soliton solution. The formula obtained unifies the all-bright, all-dark and bright-dark mixed NN-soliton solutions. For the collision of two solitons, the asymptotic analysis shows that for a MM-component Mel'nikov system with M3M \geq 3, inelastic collision takes place, resulting in energy exchange among the short-wave components supporting bright solitons only if the bright solitons appear at least in two short-wave components. Whereas, the dark solitons in the short-wave components and the bright solitons in the long-wave component always undergo elastic collision which just accompanied by a position shift.Comment: arXiv admin note: substantial text overlap with arXiv:1706.0549

    Scaling of Coulomb pseudo-potential in s-wave narrow-band superconductors

    Full text link
    The Coulomb pseudo-potential μ\mu^* is extracted by fitting the numerically calculated transition temperature TcT_c of the Eliashberg-Nambu equation which is extended to incorporate the narrow-band effects, that is, the vertex correction and the frequency dependence of the screened Coulomb interaction. It is shown that even for narrow-band superconductors, where the fermi energy ϵF \epsilon_F is comparable with the phonon frequency ωph \omega_{ph}, the Coulomb pseudo-potential is a pertinent parameter, and is still given by μ=μ/[1+μln(ϵF/ωph)]\mu^* = \mu/[1+\mu \ln(\epsilon_F/\omega_{ph})] , provided ωph\omega_{ph} is appropriately scaled.Comment: 5 pages, 3 figures, accepted for publication by Phys. Rev.
    corecore